
MATH  22
Lecture  A:   9/2/2003

THEMES

This is a wretched beginning, indeed!
—Jane Austen, Pride and Prejudice, ch. 59

La distance n’y fait rien; il n’y
a que le premier pas qui coûte.

—Mme du Deffand

(sorry; no Russian font for
the original of the Pushkin;

hope you copied it down in class!)
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The distance is nothing; it is only
the first step that is difficult.

—Mme du Deffand

He had the talent of saluting
felicitously every theme, . . .
or, with an epigram-surprise,
of kindling smiles in ladies’ eyes.

— Pushkin, Eugene Onegin, I:5

Today:  Introduction; course themes; proofs
with examples; prime numbers, primality
testing and the Sieve of Eratosthenes (4.3)



Administrivia I:  Course
• Description

Sets, relations and functions, logic and methods of proof,
combinatorics, graphs and digraphs.  Partially true.

• Home Page
http://www.tufts.edu/~melder01/22.html

• Prerequisites
Mathematics 11 or Computer Science 11 or consent.

• Textbooks
Ralph P. Grimaldi, Discrete and Combinatorial Mathematics,
fifth edition, Addison-Wesley 2003.

Lewis, et. al., Data Structures and Their Algorithms, Harper-
Collins 1991.

• Syllabus Handout

• Problem sets, exams, grading
(All on the course homepage!)



Administrivia II: Section
• Instructor

Larry Denenberg, larry@denenberg.com
Office hours Thursday after class or by appointment, BP 214
Phone 617-995-1234 during the day
http://larry.denenberg.com/

• Location
Here.

• Lectures
Presentation of the same material, sometimes from a slightly
different viewpoint to enhance understanding (but your
formal responsibility is to the syllabus and the textbook!)

Questions answered; obscure points cleared up; related
topics explored; entertainment offered; dragons slain

• Lecture notes
Posted on the web (location TBD; possibly the course site)
but not handed out physically due to budgetary constraints

Use them in place of notetaking, or to take notes upon, or
after class for review—your choice.  (Choose based on
personal learning style;  it’s worth finding your best mode!)



Theme I:  Proofs
What is a (mathematical) proof?  Theorems
vs. lemmata, corollaries, and conjectures.
Good & bad proofs.  Kinds of proof.
Logic.  Famous proofs.
Goals:
   - Read and appreciate proofs
   - Write correct and literate proofs

Theme II:  Algorithms
What is an algorithm?   What properties
must an algorithm have?   How do we
measure the “goodness” of an algorithm?
Some formalizations (maybe).

Goals:
   - Know how algorithms differ from proofs
   - Learn a little about algorithm analysis



Theme III:  Notation
Thirty percent of mathematical maturity is
fearlessness in the face of symbols:  the
ability to read and understand notation, to
introduce clear and useful notation when
appropriate (and not otherwise!), and a
general facility of expression in the terse—
but crisp and exact—language that
mathematicians use to communicate ideas.
Mathematics, like English, relies on a
common understanding of definitions and
meanings.  But in mathematics definitions
and meanings are much more often attached
to symbols, not to words, although words
are used as well.  Furthermore, the
definitions are much more precise and
unambiguous, and are not nearly as
susceptible to modification through usage.
You will never see a mathematical
discussion without the use of notation!



What is a proof?
According to the dictionary, . . .  [never do this!  never!]

A proof of a fact is any argument that convinces you of
that fact.

But:  What is an argument?  What does “convinces”
mean?  Who is “you” in this definition?  What does
“obvious” mean?

Mathematical proof is a (partially successful) way to
standardize answers to these problems:  A mathematical
proof is a chain of reasoning leading from assumptions to
a conclusion, where each step follows from accepted
logical principles and uses no facts or information that
have not previously been proved.

Proof vs. definition.  A definition is not a proof!

What makes a good proof, an elegant proof, an artistic
proof?   Proof as artistic expression.  (Erdös’ book)

Logic:  A formalization of the notion of proof.

Kinds of proof:  Construction, contradiction, mathematical
induction, infinite descent, diagonalization, . . .

Computer proofs



Our First Theorem
Theorem I:  For all positive integers n,

       1 + 2 + 3 + . . . + n  =  n(n+1)/2

We can write this more compactly as

Examples:

• n = 3:    1+2+3 = 6 = (3)(3+1)/2

• n = 6:    1+2+3+4+5+6 = 21 = (6)(7)/2

• n = 1:    1 = (1)(2)/2

How can we prove this for all n?

 n
∑ i  =  n(n+1)/2
i=1



Nonmathematical Proofs
Proof B1:  It’s true because it says so in the
Bible.  (Or the Qur’an, or my father said
so, or Larry says so.)   [Proof by authority]

Proof B2:  It’s true because I tried it for
many values and never found it wrong.
[Proof by inductive reasoning]

Proof B3:  It’s true because Dan Quayle
says it’s false.  (Or Larry says it’s false.)
[Proof by ad hominem argumentation]

Proof B4:  It’s true because if you don’t
believe it I’ll break your neck (or give you
an F in Math 22).  [Proof by intimidation]

Proof B5:  It’s true since 2n = 1+(n-1)+n
therefore n(n+1) = n2 + n and so the
conclusion follows.  [Non sequitur]

All of these are nonmathematical proofs,
often used in the real world.



Proof by
Mathematical Induction

(not to be confused with inductive reasoning; cf vos Savant)

Suppose we have a statement S about a
number n.  (We write Sn for such a statement.)
Suppose that we can prove two things:

• The statement is true for 1, that is, S1  is true.

• Assuming that the statement is true for an
unspecified number n, we can prove the
statement true for n+1, that is, Sn implies Sn+1.

We can conclude that Sn is true for all n≥1.

This is the Principle of Mathematical
Induction, which in this class we just assume
to be true (though it does need to be proved!).

But it’s at least intuitive:  we know S1, and
from S1 we know S2, and from S2 we know S3,
and so forth, which means Sn is true for all n.



Our First (Real) Proof
We are going to prove Theorem 1 by
mathematical induction.  The statement about n,
Sn, is that  1 + 2 + 3 + . . . + n = n(n+1)/2.

By the Principle, there are two things to show:

• S1 is true, i.e., 1 = (1)(2)/2,  clearly true.

• Sn implies Sn+1.  That is, assuming Sn is true,
we need to prove Sn+1, i.e., we must prove that

1+2+3+ . . . + n + (n+1) = (n+1)(n+2)/2

Think of the LHS as (1+2+3+…+n) + (n+1).
Since we know Sn is true, we can rewrite it as

(n(n+1)/2) + (n+1)

and a little algebra turns this into (n+1)(n+2)/2
which is what Sn+1 says it should be.  All done.
[Much more on mathematical induction later in the course.]



A Prettier Proof
The sum we’re looking for, call it X, is:
  1   +     2    +    3     +    .   .   .    + (n-1)   +   n
But X is also equal to:
  n   +  (n-1) + (n-2)  +    .   .   .    +    2      +   1
Adding these, it follows that  2X equals:
(n+1)+(n+1)+ (n+1) +    .   .   .     + (n+1)+(n+1)
This sum consists of n copies of (n+1), so we
have

2X = n(n+1)
or

X = n(n+1)/2
which is the result we’re looking for!
(This last line is often written QED, that is,
“quod erat demonstrandum”, or just �.)

Is this a better proof?  (Let’s look at a picture!)  Good
proofs help to promote understanding, they’re not just
globs of rigor or formalism!



New Topic:  Primes
Let n>1 be an integer.  We say that n is
composite if n =  ab for two integers a and b
(not necessarily distinct) each of which is  > 1.

If n is not composite, then n is called prime.
(1 itself is neither prime nor composite—it’s called a unit.
The text has a different but equivalent definition using
divisors:  a|b means that there is no remainder when b is
divided by a, and n is prime if it has exactly two positive
divisors, itself and 1.)

Examples:
• 6 is composite, since 6 = (2)(3).
• 24 is composite, since 24 = (6)(4).
• 9 is composite, since 9 = (3)(3).
• 3, 7, 11, 37, 91, and 5882352941 are prime [careful!].

Two questions naturally arise:
• How many primes are there?
• Given a number, how do we tell whether it’s
prime?  (How did I know about 5882352941?)



How Many Primes?
It has been known since the time of Euclid,
2300 years ago, that there are an infinite
number of primes.

We prove this fact constructively as follows:
Given any finite set {p1, p2, . . ., pn} of primes
we will construct a new prime p that’s not in
the set!  Of course we can then use the same
construction to make new primes endlessly.

Lemma (eh?): If n is composite, then there is
some prime p that divides n (proved on page
222 using concepts from earlier sections).

Proof (of main theorem):  Given the set of
primes as above, let  a = 1 + p1p2p3…pn.
Since  a > 1 there are two possibilities:

• a is prime.  But a is clearly not one of the pi
(it’s too big) so a is a new prime.
(continued...)



• a is composite.  Then by the Lemma there is a
prime p that divides a.  But clearly none of the
pi in our set divide a, since dividing a by any of
the pi will leave remainder 1!  So p is not equal
to any of the pi and thus is a new prime.

In either case, we’ve constructed a new prime
as promised and we’re done.    QED

Comment:  The text recasts essentially the
same proof as proof by contradiction.  That is:

Suppose we assume that a statement S is false,
and using this assumption we can prove a
contradiction (that is, a patently false statement,
like 1=2).   Then statement S is true!

The proof in the text starts by assuming there
are a finite number of primes p1, p2, . . . , pk,
and concluding that one of these primes must
divide 1, an absurdity.  It follows that there
cannot be a finite number of primes.



Algorithms
Now for the second question:  How do we test a given
number to see whether it’s prime?

What we’re looking for is not the same thing as a
proof!   We can prove that a specific number (e.g. 91)
is or is not prime, but here we want a “method” that
works on an arbitrary number, not given in advance.

Such a method is called an algorithm.  An algorithm is
a computational procedure used for solving a problem;
it takes some input and produces some output.   To be
an algorithm, a computational procedure must be:

1. Effective, that is, able to be rendered as a
computer program.

2. Correct.  An algorithm must never give
the wrong answer.

3. Terminating.  An algorithm must
eventually stop with an answer.

An interaction between algorithms and proof is that we
usually must prove these properties of our algorithms!



Algorithms for primality testing
Algorithm 1:   Given n, check to see if it is divisible by
2, 3, 4, 5, 6, 7, .  .  . , n-1.  If the answer is always NO, n
is prime.

Are the effectiveness, correctness, and termination of this
algorithm obvious?   What are the inputs and outputs?

Algorithm 2:   Given n, check to see if it is divisible by
2, 3, 4, 5, 6, 7, . . . , floor(√n).  If the answer is always
NO, n is prime.

Just as obviously effective and terminating, but maybe
not so obviously correct.  Why does it work?

(Notation:  floor(x) is the greatest integer less than x, i.e.,
x rounded down to the next smallest integer.)

Although both of these are algorithms, Algorithm 2 is
better than Algorithm 1 because it’s (obviously) faster.
How much faster?  How do you measure the speed of an
algorithm anyway?  In what other ways might one
algorithm be better than another?   We’ll take up these
questions later in the course.



Another primality algorithm
Algorithm 3:   Given n, check to see if it is divisible by
2, 3, 5, 7, 11, 13, .  .  . , floor(√n), that is, by all primes
up to (the floor of) its square root.  If the answer is
always NO, n is prime.

Again, we must take a moment to convince ourselves of
the correctness of this algorithm.  You may also raise the
question of effectiveness, since somehow we need to
have at hand a list of the primes, and we need a primality
tester to generate them!



The Sieve of Eratosthenes
(air uh TAHZ the knees)

Here is an algorithm, 2200 years old, for finding all
the primes from 2 up to any number N (where N is
specified in advance):

Step 1:  Write down all the integers from 2 up to N.
All numbers start “unmarked”.

Step 2:  Let p be the smallest unmarked number on
the list.  Mark it as prime.

Step 3:  Starting with 2p, mark every pth number on
the list as composite.

Step 4:  If there are any unmarked numbers on the
list, go back to Step 2.  Otherwise, stop.

(As usual, we must satisfy ourselves of the
effectiveness, correctness, and termination of this
algorithm.)

(Pretty sieve picture drawn on blackboard.)



Twin Primes
Suppose two numbers p and p+2 are both
prime.  Such numbers are called twin primes.

Examples: 11 & 13, 41 & 43, 107 & 109.

Question:  How many twin primes are there?
The answer is that nobody knows.  It seems
likely that there are an infinite number, but
nobody has proved it either way.  That is, we
conjecture that there are an infinite number
of twin primes.  (Why is this a hard problem?)

Three numbers p, p+2, and p+4 that are all prime are
called triplet primes (a term I just invented).  For
example, 3, 5, and 7 are triplet primes.  It isn’t too
hard to prove that there aren’t an infinite number of
triplet primes;  in fact, 3, 5, and 7 are the only triplet
primes!  Can you prove this?  Hint:  Why can’t two
numbers p and p+1 both be prime, except  2 and 3?
As another hint, you might think about what the Sieve
does to any three numbers p, p+2, p+4.


