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LOGIC

Contrariwise, if it was so, it might be;
and if it were so, it would be; but as it
isn't, it ain't.  That's logic.

—Lewis Carroll, Alice’s Adventures
in Wonderland, chapter 4

And faith unfaithful kept him falsely true.
—Tennyson, Idylls of the King,
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• Add/drop rules
• Office phone number is 617-995-1234 and

nothing else
• When to find me in my office

Today:  Introduction to propositional calculus:
Propositions, connectives, expressions.



Logic:  Background
The study of reasoning, the attempt to separate legitimate
from bogus inference, goes back to the ancient Greeks.
Our more modern formulation dates from the middle of
the nineteenth century.

Many kinds of logic are studied by mathematicians
today.  The basis of all of them is the propositional
calculus, which is where we start in this course.
Learning propositional calculus is very much like
learning the basics of arithmetic:  addition and
multiplication.   The only way to do it is by working
dozens of exercise—more than we provide in this course.
It’s a lot of fun.  Try it out.

Suggested reading:  If you like this stuff and want to see
a more complete presentation of propositional and
predicate logic, including lots of discussion of the
connections between logic and English (and also many
excellent exercises), you can’t do better than Methods of
Logic by W. V. O. Quine, one of the great philosophers
of the twentieth century.  Many examples in this lecture
are drawn from this book.



Propositions
A proposition, or statement, is an utterance that is either
true or false.  (Book uses statement;  I use proposition.)

Here are some propositions:
six times seven is thirty-five
the Red Sox won’t win the 2003 World Series
Larry is an idiot
there exists some integer n such that n2  = 49
there are an infinite number of twin primes
she is a happy person

Here are some utterances that are not propositions:
my hat                         [not  a sentence]
get stuffed, bozo         [not indicative mood]
x is greater than 1       [free variable]
n2 = 49                        [free variable]

We’ll use variables p, q, r, etc., to stand for propositions,
so we’ll say things like “p is true” or “q is false”.  It’s as
though these were variables that can have one of two
truth values, T or F.   We’ll say “p has value T”  to mean
“p stands for a true proposition”.   Remember:  The only
thing we care about is whether a proposition is T or F!



Combining Propositions
Just as we combine numbers into new numbers with the
addition and multiplication operators, there are
operators, called connectives, that we use to combine
propositions.   The most important are:

AND, which takes two propositions (say p and q) and
makes a new proposition “p and q”  written “pŸq”  or
“pq”.   Proposition pq is true when both p and q are true;
otherwise it’s false.  (The book never uses pq but I’ll do
it all the time.)  This connective is called conjunction.
We also allow p Ÿ q Ÿ r Ÿ . . . Ÿ s   or   pqr…s.

OR, which takes two propositions (say p and q) and
makes the new proposition “p or q”  written “p ⁄ q”.
Proposition p ⁄ q is T when either  of  p and q is T;
otherwise it’s F.   (⁄  is always the so-called “inclusive
or”:  p ⁄ q is T when both p and q are T.) This
connective is called disjunction.   We also permit
p ⁄ q ⁄ r ⁄ . . . ⁄ s  which means the obvious thing.

NOT, which takes a single proposition (say p) and makes
the new proposition “not p”, written “ÿp”.  Proposition
ÿp is true when p is false, and is false when p is true.
This connective is called negation.



Some Examples
Suppose that

p is the proposition  “He had a cold”
q is the proposition  “She went to the bank”
r is the proposition “They left town”

Then
pq is the proposition “He had a cold, and she went to the
bank” which is true if both things happened and false if
either one didn’t happen
p ⁄ q is the proposition “He had a cold, or she went to the
bank” which is true if either or both things happened, and
is false only if neither happened
ÿp is the proposition “He didn’t have a cold”

We can also build more complex propositions:
pq ⁄ r is “Either he had a cold and she went to the bank,
or else they left town (or both)”
p Ÿ ¬(q ⁄ r) is “He had a cold, and it is not true either that
she went to the bank or that they left town”

Notice the importance of parentheses as we build up
complex propositional expressions.   p Ÿ (q ⁄ r) is very
different from (p Ÿ q) ⁄ r!



More connectives
Here are other important  propositional connectives.
As usual, p and q are propositions.

p Æ q,  usually read “if p then q”, is true when p is true
and q is true, or if p is false (whether or not q is true!).
(Pause for discussion of this last point.)   The only time
proposition p Æ q is false is when p is true and q is
false.   This connective is called implication (but we
must be careful about this).   It can also be read
“p implies q” and in many other ways.   Proposition p is
called the antecedent or hypothesis and q is called the
consequent or conclusion of the implication.

p ≡ q, read “p if and only if q”, is true when p and q are
both true or both false.  This operator is called the
biconditional or equivalence (and we have to be even
more careful about this!).  It means that p and q have the
same truth value.  The text uses a two-way pointing
arrow, which I can’t find in my symbol font.

p ! q, read “p exclusive or q” or “p ex or q”, is true when
p is true or q is true but not both.  (The text has a symbol
for this operator that I’ve never seen anywhere.)



Evaluating expressions
To evaluate a propositional expression is to determine
whether its value is T or F for a particular assignment of
truth values to its propositional variables.  (Such an
assignment is called an interpretation of the variables.)

Example:  What is the value of
(pq ⁄ (ÿp)(ÿr))  Æ  (q ≡ r )

when p  and  q  are false and  r  is true?

Of course we evaluate propositional expressions just like
we would arithmetic expressions, namely, from the
inside out.  In this case we note that  pq  is  F  and so is
(ÿp)(ÿr)  since  r  is T, so the entire LHS is F.  Hence
we know that the entire expression is true without even
evaluating the right-hand side (which, by the way, is F).

I hope it’s clear that the value of an expression depends
on the values of its propositional variables.  In the above
example, if all three variables are T then the value is T.
In principle, you can evaluate any expression  2n  ways,
where  n  is the number of  propositional variables it
contains.  (There are  2n  possible ways to assign a value
T or F to each of   n  variables.)



Truth Tables
A truth table is a compact way to show the possible
values of a propositional formula.  Make a row for each
of the 2n  truth assignments of the propositional variables
in the formula.   Then, in each row, we compute the
value of the formula for that assignment.

TTT
TFT
TTF
FFF

p ⁄ qqp

TTT
FFT
FTF
FFF

p Ÿ qqp

Truth table for p ⁄ q Truth table for p Ÿ q

(You could think of these particular truth tables
as the  definitions  of these two truth functions.)

Not a prayer of me making a complex truth table
on these slides.   We’ll do it on the blackboard.
We’ll also do a Quine truth-value analysis, a
better way to do it altogether.



[Other connectives]
He likes her,  but she doesn’t like him.
Smith will sell unless he hears from you.
An animal is a mammal only if it has a heart.

These may seem like new connectives, but they’re not.
Logically, but is the same as AND,  unless is another
way to say OR,  and only if is a rephrasing of IMPLIES.
The bottom line is that there are a lot of ways of
expressing connectives in English, and care is needed
when translating words into symbols.   (cf.  Quine)

Arthur was president before Mark Twain died.
Jones died because he ate fish with ice cream.

The problem here is different.  With other connectives
we’ve seen the value of the expression depends only on
the values of the components.   But the truth values of p
and q don’t determine the truth value of “p before q” or
“p because q”;  you need extra outside information.
 We say that unless and before are not truth-functional:
they are not simply functions of the things they connect.
In propositional calculus we study only truth-functional
connectives like ÿ, ⁄, Ÿ, Æ, ≡,  etc.
(before and because are handled by other logics.)



Special expressions
Suppose we evaluate the expression

(p≡q) ⁄ ((qÆr) Ÿ (r Æ q)) ⁄ pr ⁄ (ÿp)q(ÿr)
in the case where p and r are T but q is F.   We find that
the result is T.   Actually, we find that the result is T
when we evaluate this expression for any values of the
propositional letters.  If we made a truth table, we would
have eight rows all with a T in the final column.

A propositional formula that evaluates to T no matter
what values are given to its propositional letters is called
a valid formula or a tautology.   Perhaps the simplest
example of a tautology is the formula p ⁄ ÿp:    Either he
went to the store or he didn’t.   Another obvious
tautology is pÆp:  If the Bruins win then the Bruins win.

A propositional formula that always evaluates to F is
called invalid or a contradiction.    p Ÿ ¬p  is a simple
example.    Is  pÆ ÿp  (“if the Bruins win then the
Bruins don’t win”) a contradiction?

A formula that evaluates to T for at least one assignment
of values is called consistent.  All tautologies are
consistent.  The book doesn’t use this terminology.



Logical Equivalence
Definition:  Two propositional formulas F and G are
called logically equivalent, written  F ¤ G,  if they have
the same value under every interpretation, i.e., every
assignment of truth values to the propositional variables.
For example,  p ⁄ q  is equivalent to  (ÿp)q ⁄ p, as you can see
by checking 4 truth assignments.   Another example:  pqÆr   is
equivalent to  pÆ (qÆr).   But  pq Æ r   is not equivalent to
(pÆq) Ær  since when all three variables are F the first is true
but the second is false.  Another example:  All tautologies are
equivalent,  e.g., any tautology is equivalent to p ⁄ ÿp.

Here’s a tricky theorem:  Let F1 and F2 be any formulas.
Then F1 and F2 are equivalent if and only if the formula
F1 ≡ F2 is a tautology.   That is:

F1 ¤ F2      if and only if     F1 ≡ F2 is a tautology
Don’t be confused:  The LHS is a statement about two
formula, F1 and F2.  The RHS is a statement about a new
formula F1 ≡ F2.  (The connective ≡ combines two
formulas to form a new one.)  The theorem says that two
formulas being equivalent is the same thing as a certain
new formula being a tautology.
Be careful: ¤ is not an operator connecting two
formulas into a new one;  it’s shorthand for a statement
about two formulas!



Substitution
Suppose F1 is a formula that contains a subformula  G1,
and suppose that G2 is a formula equivalent to G1.
Then if we substitute G2 for G1 in F1, we get a new
formula F2 that is equivalent to F1.
(The text calls this the “second rule of substitution”.)

For example, go back to the formula
(p≡q) ⁄ ((qÆr) Ÿ (rÆq)) ⁄ pr ⁄ (ÿp)q(ÿr)

It’s easy to prove that (qÆr) Ÿ (rÆq) is equivalent to
the formula r ≡ q.  So this big formula is equivalent to

(p ≡ q) ⁄ (r ≡ q) ⁄ pr ⁄(ÿp)q(ÿr)

Note that substitution doesn’t have to make a formula
smaller;  it can also make it bigger.  Also, you don’t have
to substitute G2 at every place G1 appears;  you can
substitute at just one, or just some.   For example, since
formula q is equivalent to (q⁄q), the last formula above
is also equivalent to

(p ≡(q⁄q)) ⁄ (r ≡ q) ⁄  pr ⁄ (ÿp)(q⁄q)(ÿr)
by substituting (q⁄q) for some of the occurrences of q.



Laws of Logic
We now come to a bunch of equivalences known as the
Laws of Logic.   Each of these is proved by showing that
the appropriate biconditional is a tautology.

Double negation:    ÿÿp  ¤  p

Idempotency:         p ⁄ p  ¤  p Ÿ p  ¤  p

Commutativity:      p ⁄ q   ¤   q ⁄ p
                 p Ÿ q   ¤   q Ÿ p

Associativity:    (p ⁄ q) ⁄ r   ¤   p ⁄ (q ⁄ r)
          (p Ÿ q) Ÿ r   ¤   p Ÿ (q Ÿ r)

Distributivity:    p Ÿ (q ⁄ r)   ¤   (p Ÿ q) ⁄ (p Ÿ r)
                           p ⁄ (q Ÿ r)   ¤   (p ⁄ q) Ÿ (p ⁄ r)
(This last is a little surprising.  In arithmetic, we have
x(y+z) = xy+xz,  but we don’t have x+yz = (x+y)(x+z).
 In logic, each operator is distributive over the other!)

Absorption:    p ⁄ pq   ¤   p(p ⁄ q)  ¤   p

The text gives others with tautologies and contradictions.



DeMorgan’s Laws
These immensely useful laws are named after a mid-
nineteenth century mathematician.

ÿ(p ⁄ q)  ¤ (ÿp) Ÿ (ÿq)

ÿ(p Ÿ q)  ¤  (ÿp) ⁄ (ÿq)

That is, to negate a disjunction (OR), you negate each
piece separately but change it to a conjunction (AND).
Similarly, to negate an AND you negate each piece and
change to OR.

A bigger example:  The formula
ÿ((pÆ (ÿs)q)  ⁄  ÿ(sqÆ ÿp))

whose outer form is “ÿ(F V G)”, is equivalent to

ÿ(pÆ(ÿs)q)  Ÿ  ÿ(ÿ(sqÆ ÿp))
By cancelling a double negation, we get

ÿ(pÆ(ÿs)q)  Ÿ  (sqÆ ÿp)



Simplification
We can use the laws of logic and substitution to simplify
formulas.   For example, if we continue with

ÿ(pÆ(ÿs)q)  Ÿ  (sqÆ ÿp)
we can use the fact that (pÆq)  is equivalent to  (ÿp⁄q)
to change the left side

ÿ(ÿp ⁄ (ÿs)q)  Ÿ  (sqÆ ÿp)
Now apply DeMorgan’s Law to the left-hand side:

(ÿ(ÿp) Ÿ ÿ((ÿs)q))  Ÿ  (sqÆ ÿp)
Double negation and DeMorgan:

(p Ÿ (s ⁄ ÿq))  Ÿ  (sqÆ ÿp)
Again translating an implication:

(p Ÿ (s ⁄ ÿq))  Ÿ  (ÿ(sq) ⁄ ÿp)
Distributivity of Ÿ over ⁄:

((ps ⁄  p(ÿq))  Ÿ  (ÿ(sq) ⁄ ÿp)
. . . and so forth, until we get down to:

p Ÿÿq
Simplification can go a long way.



Duality
Let F be a formula that contains only propositional
variables and the connectives ÿ, ⁄, and Ÿ.  Then the
dual of F, written (in the text)  Fd,  is the formula we get
by changing every Ÿ to ⁄ and vice versa in F.

For example, the dual of   p(q ⁄ (ÿr))  is   p ⁄ (q(ÿr)).
(Note that  ÿp  is its own dual.)

Here’s something incredibly interesting:   If two
formulas are equivalent, then their duals are also
equivalent!   (Handwaving proof:  In logic, T and F are
absolutely symmetric.  So interchange them completely
in truth tables!  The truth table of ⁄ goes to Ÿ and vice
versa;  the truth table of ÿ is unchanged.)

So, for example, once we prove that   ÿ(p v q)  is
equivalent to   (ÿp) Ÿ (ÿq),  we know immediately by
duality that  ÿ(p Ÿ q)   is equivalent to   (ÿp) ⁄ (ÿq).

By the way, what’s the dual of   pÆq?   We have to
write it using only ⁄ and Ÿ, namely   ÿp ⁄ q.  Now we
can make the dual:  ÿp Ÿ q, which is not expressible as
an implication.



Implication
Consider again the implication  pÆq.  Several variants
of this implication have special names:

(ÿp) Æ (ÿq)    is called the inverse of   pÆq
qÆp   is called the converse of   pÆq
(ÿq) Æ(ÿp)   is called the contrapositive of   pÆq

Example:  Let p be “I am rich”,  let q be “I am happy”,
and consider the implication “If I am rich, then I am
happy”.   We have the following variants:
    inverse:   If I am not rich, then I am not happy.
   converse:  If I am happy, then I am rich.
   contrapositive:  If I am not happy, then I am not rich.

It is easy to check that any implication and its
contrapositive are equivalent, which means that you can
prove an implication by proving the contrapositive!  But
this does not apply to the other variants:  An implication
is NOT equivalent to its converse, nor to its inverse.
(But the inverse and the converse  ARE equivalent, since
the inverse is the contrapositive of the converse!)

If an implication  pÆq   and its converse are both true,
then the biconditional   p≡q   is true.



[Universal Connectives]
You may have noticed that we can write any formula
using only ⁄, Ÿ, and ÿ.   In fact, we can write any
formula using only ÿ and ⁄, since we can always write
pŸq in the equivalent form ÿ((ÿp) ⁄ (ÿq)).  Similarly,
we can write any formula using only  ÿ  and  Ÿ.

On the other hand, there are formulas that we can’t write
using just ⁄ and Ÿ.   For example, there’s no way to
write a formula equivalent to  ÿp  using only ⁄ and Ÿ.

Interestingly, we can devise connectives that by
themselves suffice to write any formula!  An example is
the connective not both,  p|q, which is T when p and q
are not both T and as F when p and q are both T.   Using
only |, we can write (ÿp) as  p|p, and we can write  pq
as (p|q)|(p|q).  This already proves that using just | we
can write an equivalent to any formula!  This can also be
done with the connective neither-nor.

By the way, how many truth functions of two variables
exist?  This is equivalent to saying:  How many ways are
there to fill out the last column of a two-variable truth
table?  Each way produces a different function of two
variables, and clearly there are 24 = 16 ways.  In general,
there are 2 to the 2 to the n truth functions of n variables.



Simplification II
Given a propositional formula F, how can we find the
simplest formula that is equivalent to F?

For example, consider the formula:
p(ÿq)  ⁄  (ÿp)q  ⁄  q(ÿr)  ⁄  (ÿq)r

It can be simplified to:
p(ÿq)  ⁄  (ÿp)r  ⁄  q(ÿr)

But how can we find this algorithmically?

The text gives some examples of why this is important,
involving minimizing switching circuits.  But there are
zillions of other reasons that you want to be able to
express complex expressions in simplest form.

The answer, first proved by Cook in 1960, is that there is
no computationally efficient algorithm that takes as input
a propositional formula and produces as output the
simplest equivalent formula!  This is true for any
reasonable definitions of the words “simplest” and
“efficient”.   We will run across this whole topic again
when we study computational complexity.


