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MATHEMATICAL
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The great tragedy of science:  the
slaying of a beautiful hypothesis by
an ugly fact.
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“Biogenesis and Abiogenesis”
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Administrivia
• http://denenberg.com/LectureK.pdf

• Test problem 3b revisited;  answer is
   C(13,1)48 [4 of a kind]
       +  C(13,2)C(4,2)244 [2 pair]
       +  C(13,1)C(4,3)C(12,1)C(4,2) [full house]
(a good lesson in the perils of multiple-counting)

• Unpicked-up homeworks, projects, exams, . . .

• Project 4 available today; due next week

Today:   Mathematical induction [VERY IMPORTANT],
binary relations



Well Ordering
Definition:  Let S be any set of numbers.   If every
nonempty subset of S has a smallest member, then S is
said to be well-ordered.

Examples:
Z+, the positive integers, is well-ordered since any set of
positive integers has a smallest member.

Z, the set of all integers, is not well-ordered.  You can
see this by taking the nonempty subset Z, which has no
smallest member.

The set S of all rational numbers between 1 and 2
inclusive is not well-ordered.  (Consider S – { 1 }, the
subset consisting of S with the number 1 removed.)

Obvious Theorem:  If S is well-ordered, then so is any
subset of S.  Duh.

We don’t actually care at all about well-ordering in this
course except for the fact that Z+ is well-ordered.  (And
even this we have to take this on faith, because we don’t
know enough about the integers to prove it rigorously!)



Mathematical Induction
Suppose we have a statement S about a number n, which
we (now) write as S(n).   (S is an open statement with
free variable n, just like p(x) or q(x,y).)
Suppose that we can prove two things:
• The statement is true for n=1, that is, S(1)  is true.
(Basis step)
• Assuming the statement true for an unspecific n, we
can prove it true for n+1, that is, S(n) fi S(n+1).
(Inductive step.)
We can conclude that S(n) is true for all integers n ≥ 1.
This is the Principle of Mathematical Induction.
Proof:   Suppose the two sentences above are true of S.
Let T be the set of all positive integers k such that S(k) is
false, that is, T = { k Œ Z+ | ¬S(k) }.   We want to prove
that T is empty.
By contradiction, suppose the contrary.  Then T, being a
nonempty subset of the positive integers, has a smallest
element.   Call that element m;  so S(m) is false.   Now m
can’t be 1 (since S(1) is true by the basis step), so m > 1,
so m–1 ≥ 1.  Since m–1 œ T we know S(m–1) is true (by
definition of T).   But then S((m–1)+1) is true by the
inductive step, which says that S(m) is true.
Contradiction.



How To Do It
To review:  In order to prove a statement S(n) by
mathematical induction, you must do two things:
(a) Prove the basis step S(1).
(b) Prove the inductive step,  S(n) implies S(n+1).   You
do this by assuming that S(n) is true and (using that
assumption) proving that S(n+1) is true.

[Does this seem like cheating, or like begging the question?
It’s not.  You assume S(n) for a single (general) n, and prove it
true for a different n.  It’s not cheating.  It is, however, magic.]

During the proof of the inductive step, the assumption
that S(n) is true is called the inductive hypothesis.

Example (reprise):     1 + 2 + 3 + .  .  .  + n  =  n(n+1)/2

Basis step:  Let n=1.    Is  1  =  1(1+1)/2?    Yes;  done.

Inductive step:   Assume  1+2+...+n = n(n+1)/2.
To prove the theorem for n+1 we must prove that
1+2+...+n+(n+1) =  (n+1)((n+1)+1)/2.   Rewrite the LHS
as (1+2+...+n) + (n+1), which using the inductive
hypothesis is  n(n+1)/2 + (n+1).   Use algebra to
rearrange this into (n+1)(n+2)/2.    QED



More Examples
For all n ≥ 1, the number n3 + 2n is divisible by 3.
Proof by mathematical induction:
Basis step:  13 + 2(1) = 3 is divisible by 3.
Inductive step:  Assume n3 + 2n is divisible by 3.    We
must prove that (n+1)3 + 2(n+1) is divisible by 3.  But
this equals  n3 + 3n2 + 3n +1 + 2n + 2, which can be
rearranged as (n3 + 2n)  + 3(n2 + n + 1).   The first term
here is divisible by 3 using the inductive hypothesis, and
the second as well since it’s 3 times something.  The sum
of things divisible by 3 is divisible by 3.  QED

Let S be any set.  If |S| = n, then |P(S)| = 2n.
Proof by mathematical induction:
Basis step.  If |S| = 1 then the only elements of P(S) are
∅ and S, so P(S) has cardinality 2 = 21.
Inductive step:  Let |S| = n+1 and pick an x Œ S.   By the
inductive hypothesis there are 2n subsets of S–{x}; none
of these subsets contains x.   But adding x to any of these
subsets creates a new subset of S that does contain x,
producing 2n more subsets of S.  And this accounts for
all the subsets of S.  So the total number of subsets of S
is 2n + 2n = 2(2n) = 2n+1.    QED



Horse of a Different Color
Theorem:  All horses have the same color.
Proof:  We this theorem by proving, via MI, the
following statement:  If S is any set consisting of
n horses, then all horses in S have the same color.

Basis step:  If n=1, the set S contains only one horse.
Clearly all horses in S have the same color.

Induction step:  Suppose that any set of n horses consists
of horses all of the same color (inductive hypothesis).

Let S be any set of n+1 horses H1, H2, H3, . . . , Hn+1.
If we remove Hn+1 from S we get a set of n horses; by
the inductive hypothesis these horses H1, H2, . . ., Hn all
have the same color.
Now replace Hn+1 and remove H1; the resulting set
H2, H3, . . ., Hn+1 is also a set of n horses, and so by the
inductive hypothesis they all have the same color.

But if H1 is the same color as H2, H3, . . ., Hn; and if
Hn+1 is also the same color as H2, H3, . . ., Hn, then
H1 and Hn+1 must be the same color, so H1, H2, H3, . . .,
Hn+1 are all of the same color.    QED

Is something wrong here?



Variation:  n0 ≠ 1
We don’t have to use S(1) in the basis step;  we can start
by proving S(0) or S(–1) or S(20).  Then the resulting
theorem, instead of being true for all n ≥ 1 is true for all
n ≥ whatever we used in the basis step.
Theorem:  n100 <  2n  for all  n ≥ 1024.

Proof by mathematical induction:
Basis step.   Suppose n = 1024 = 210.  Then

n100  =  (210)100  = 21000  <  21024  =  2n

so the theorem is true for n = 1024.
Inductive step.  Assume n100 < 2n.  Now

(n+1)100   =    n100(1 + 1/n)100

The first of these factors is  less than 2n by the inductive
hypothesis.  And since n ≥ 1024 we have

(1+1/n)100   ≤   (1+1/1024)100   ≈   1.1  <  2
so

n100(1 + 1/n)100   <   2n(2)  =  2n+1

proving that  (n+1)100 < 2n+1, which is what we were
supposed to prove in the inductive step.       QED

(The number 100 here is immaterial;  it could actually be
any integer no matter how large.   For large enough n, an
exponential function is larger than any polynomial!)



Variation:  Strong Form
The following is a stronger way of stating the P. of M.I.:

Suppose S(n) is an open statement with free variable n,
and suppose that we can prove two things about S(n):
• (Basis step)  S(1) is true.
• (Inductive step)  Assuming that S(1), S(2), S(3), . . . ,
S(n) are all true, we can prove that S(n+1) is true.  That
is, we can prove S(1) Ÿ S(2) Ÿ . . . Ÿ S(n) fi S(n+1).
Then S(n) is true for all integers n ≥ 1.

See the difference?  In this form of MI we get a stronger
inductive hypothesis:  To prove S(n+1) we can assume
not just S(n) but also all of S(1), S(2), . . ., S(n–1).

(We can combine these variations and start at any n0, not
just 1, of course.   Grimaldi gives an even more general
version of the strong form, in which you must prove
several basis steps.)



Example:  Sequences
Define a sequence of numbers as follows:

b0  =  b1  =  1
for n≥2,        bn  =  2bn–1  +  bn–2

[This is an example of recursive definition, where a
sequence of numbers (or a set) is defined by using
previous elements of the sequence (or other elements of
the set).   More examples in Grimaldi 4.2.]

Theorem:   bn < 6bn–2 for all n ≥ 4.
Proof by Mathematical Induction (strong form):
Basis step:   We must calculate a few more of the bi:

b2 = 2b1 + b0 = 2(1) + 1 = 3
b3 = 2b2 + b1 = 2(3) + 1 = 7

b4 = 2b3 + b2 = 2(7) + 3 = 17 < 18 = 6b2
Inductive step:   By the (strong) inductive hypothesis:

bn–1 <  6bn–3       and        bn <  6bn–2
Therefore  bn+1 = 2bn + bn–1 <  12bn–2 + 6bn–3
                          =  6 (2bn–2 + bn–3)  =  6bn–1        QED
(Notice that the inductive step doesn’t go through if all
we can use is the bound on bn!)



Example:  Networks
Suppose we start out with N computers that are isolated
from each other.   We connect them by building links.
Each time we link two computers we make it possible
for those two computers, and any they are linked to, to
communicate.   We want to make it possible for all N
computers to communicate.

Theorem:  We need a minimum of N–1 links to connect
N computers.

(This is obvious if we choose one computer as a central server
and connect all the others to it, but we want to prove the
Theorem for arbitrary connection strategies!)

Proof:  Basis step.  If there is only 1 computer, we need
0 links to connect it.
Inductive step.   Suppose we connect N+1 computers in
any way whatever.  When we make the final link, we
join a set S1 containing k linked computers (for some k)
to a set S2 containing (N+1)–k linked computers.  By the
(strong) inductive hypothesis, it took at least k–1 links to
connect S1, and at least N+1–k–1 = N–k links to connect
S2.   Then we made one last link at the end   Thus we’ve
made a minimum of  (k–1) + (N–k) + 1 = N links.  QED.



Binary Relations
A binary relation is (loosely) a way in which two things
may or may not be connected.  Our first goal is to get an
intuitive understanding of what this means.

Example:  “is less than”  is a binary relation on numbers.
For example, 9 and 12 have the “less than” relation.  Of
course we usually write the relation symbol between
them:  9 < 12.   Note that order is important:  12 and 9 do
not have the “less than” relation.

Example:  “is a parent of” is a binary relation on people.
Given two people x and y,  “x is a parent of y” may or
may not be true.  We could use the symbol P for this
relation, writing x P y when x is a parent of y.

Example:  “is within 100 miles of” is a binary relation on
(say) cities.   For example, Boston and Providence have
this relation.

Example:  “is the same color as” is a binary relation on
(say) horses.  There definitely exist two horses that don’t
have this relation, spurious proofs notwithstanding.



Formalization
Here’s the mathematical definition of binary relations:
Given a set S, a binary relation on S is a subset of S ¥ S.
That is, a binary relation on a set S is a set of ordered
pairs where each component is an element of S.

For example, take the binary relation  <  on the integers:
   <    =   {  (9,12),  (8,50),  (–3,12),  (0,9),   (9,11),  . . . }
          =   {  (x,y)  Œ  Z ¥ Z    |   y–x Œ N  }
To say that x < y means that  x and y stand in the
relationship  <  to each other, that is, (x,y) Œ <.

The binary relation “is a parent of” is a set of ordered
pairs of people:
{  (Adam,Cain),  (Eve,Cain),  (Henry IV, Henry V) . . . }

The binary relation “is within 100 miles of” is a set of
ordered pairs of cities, etc.

If R is a binary relation and the ordered pair (a,b) is in R,
we often write aRb (as in a < b).

Note that any subset of S ¥ S is a binary relation on S,
even if it doesn’t make sense.



[Special Relations]
Here are three very important kinds of binary relations.

A binary relation R on a set S is reflexive if  xRx  for
every x Œ S.   That is, R is reflexive if

{ (x,x) | x Œ S } Õ R.
For example, “is within 100 miles of” is reflexive (any
city is within 100 miles of itself) and so is “is the same
color as”.   The relation < is not reflexive, since it’s not
true that x < x, but the relation ≤ is reflexive.

A binary relation R on a set S is symmetric if whenever
xRy it’s also true that yRx.  For example, “is within 100
miles of” is symmetric, but  <  is not symmetric.

A binary relation R on a set S is transitive if whenever
we have xRy and yRz we also have xRz.  For example, <
is transitive (a < b and b < c implies a < c) but “is within
100 miles of” and “is a parent of” are not transitive.

[Exercise:  For each example relation we’ve seen, tell
whether it’s reflexive, symmetric, or transitive.  Do the
same for:  “is a sibling of”,  “is a sister of”,   the empty
relation,  “is equal to”,   “has shaken the hand of”.]



Another Flavor
Up to now we’ve been speaking only of binary relations
on S, that is, subsets of S ¥ S.   Here’s another kind of
binary relation:   If S and T are any sets, a binary relation
from S to T is any subset of S ¥ T.

Example:  “is a city in” is a binary relation from the set
of cities to the set of states:
    “is a city in”  =  {  (Boston,MA),  (Omaha,NE),
                                  (Ogden,UT),  (Medford,MA), . . . }
This relation is a set of ordered pairs whose first
component is a city and whose second is a state.  (Note
that it’s not a relation on the set of cities, nor on the set
of states.)

If S and T are sets, how many binary relations are there
from S to T?   This is the same as asking how many
subsets are there of S ¥ T, since any subset of S ¥ T is a
binary relation.  We know that S ¥ T has (|S|)(|T|)
elements (last lecture; Rule of Product) and the number
of subsets of a set of size k is 2k, so there are 2(|S|)(|T|)

binary relations from S to T.  Of course this includes
some silly ones, like the empty relation.



Tree Diagrams
These are a pictorial representation of cross products.
Be sure to read all about them on pages 248–250 of G.


